Molecular pathways: the immunogenic effects of platinum-based chemotherapeutics.
نویسندگان
چکیده
The platinum-based drugs cisplatin, carboplatin, and oxaliplatin belong to the most widely used chemotherapeutics in oncology, showing clinical efficacy against many solid tumors. Their main mechanism of action is believed to be the induction of cancer cell apoptosis as a response to their covalent binding to DNA. In recent years, this picture has increased in complexity, based on studies indicating that cellular molecules other than DNA may potentially act as targets, and that part of the antitumor effects of platinum drugs occurs through modulation of the immune system. These immunogenic effects include modulation of STAT signaling; induction of an immunogenic type of cancer cell death through exposure of calreticulin and release of ATP and high-mobility group protein box-1 (HMGB-1); and enhancement of the effector immune response through modulation of programmed death receptor 1-ligand and mannose-6-phosphate receptor expression. Both basic and clinical studies indicate that at least part of the antitumor efficacy of platinum chemotherapeutics may be due to immune potentiating mechanisms. Clinical studies exploiting this novel mechanism of action of these old cancer drugs have been initiated. Here, we review the literature on the immunogenic effects of platinum, summarize the clinical advances using platinum as a cytotoxic compound with immune adjuvant properties, and discuss the limitations to these studies and the gaps in our understanding of the immunologic effects of these drugs. Clin Cancer Res; 20(11); 2831-7. ©2014 AACR.
منابع مشابه
Molecular Pathways Molecular Pathways: The Immunogenic Effects of Platinum- Based Chemotherapeutics
The platinum-based drugs cisplatin, carboplatin, and oxaliplatin belong to the most widely used chemotherapeutics in oncology, showing clinical efficacy against many solid tumors. Their main mechanism of action is believed to be the induction of cancer cell apoptosis as a response to their covalent binding to DNA. In recent years, this picture has increased in complexity, based on studies indic...
متن کاملCarbon nanomaterials sensitize prostate cancer cells to docetaxel and mitomycin C via induction of apoptosis and inhibition of proliferation
We have previously shown that carbon nanofibers (CNFs) and carbon nanotubes (CNTs) can sensitize prostate cancer (PCa) cells to platinum-based chemotherapeutics. In order to further verify this concept and to avoid a bias, the present study investigates the chemosensitizing potential of CNFs and CNTs to the conventional chemotherapeutics docetaxel (DTX) and mitomycin C (MMC), which have differe...
متن کاملDirect inhibition of STAT signaling by platinum drugs contributes to their anti-cancer activity
Platinum-based chemotherapeutics are amongst the most powerful anti-cancer drugs. Although their exact mechanism of action is not well understood, it is thought to be mediated through covalent DNA binding. We investigated the effect of platinum-based chemotherapeutics on signaling through signal transducer and activator of transcription (STAT) proteins, which are involved in many oncogenic sign...
متن کاملConsensus-Phenotype Integration of Transcriptomic and Metabolomic Data Implies a Role for Metabolism in the Chemosensitivity of Tumour Cells
Using transcriptomic and metabolomic measurements from the NCI60 cell line panel, together with a novel approach to integration of molecular profile data, we show that the biochemical pathways associated with tumour cell chemosensitivity to platinum-based drugs are highly coincident, i.e. they describe a consensus phenotype. Direct integration of metabolome and transcriptome data at the point o...
متن کاملPlatinum-based drugs disrupt STAT6-mediated suppression of immune responses against cancer in humans and mice.
Tumor microenvironments feature immune inhibitory mechanisms that prevent T cells from generating effective antitumor immune responses. Therapeutic interventions aimed at disrupting these inhibitory mechanisms have been shown to enhance antitumor immunity, but they lack direct cytotoxic effects. Here, we investigated the effect of cytotoxic cancer chemotherapeutics on immune inhibitory pathways...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Clinical cancer research : an official journal of the American Association for Cancer Research
دوره 20 11 شماره
صفحات -
تاریخ انتشار 2014